
Work stealing Fork Join Framework in C++

Xin Jin and Jiarui Li

Carnegie Mellon University

December 10, 2021

Abstract

We implemented a C++ parallel framework for fork-

join models in which problems are solved by divide-

and-conquer algorithms. Those tasks that require

splitting themselves into subtasks, waiting for them

to complete, and then collecting results can easily

take advantage of our framework to achieve approx-

imate linear speedup. Our framework also allows

users to choose from different stealing policies includ-

ing continuation-stealing and child-stealing. Based on

dynamic scheduling, our model benefits from workload

balancing in terms of the performance under multiple

threads. The measured performance plots show good

parallel speedups for the problems we tested on, and

also suggest possible improvements and future work

that we can work on.

Keywords

parallel programming, fork-join model, work-stealing

1 Background

1.1 Divide and Conquer

Divide and conquer is one of the most straightforward

problem solving techniques. This programming style

recursively spawns subtasks, solves each of them in a

separate activation record and finally composes the re-

sults. As the computation work of subtask becomes

more and more expensive, at each subroutine calling

point, it is reasonable to treat the subroutine and the

continuation as two parallelable tasks and map each of

them to parallel instances like threads to accelerate a

broad range of problems. Because of the generality of

this model, this parallel technique is called fork join

paradigm.

Depending on the next executed task when calling

fork, two kinds of implementation policies exist, i.e.

the child first policy and the continuation first policy.

The child first policy requires the threads to suspend

the current execution, save the context of the current

task, potentially give it to another idle thread (or store

it in a queue) and switch to execute the subtask.On the

other hand, the continuation first policy just suspends

the spawned subtask and keeps executing the current

task without storing the context. Furthermore, since

fork join paradigm spawning subtasks in the runtime,

a kind of dynamic scheduling is always applied. To

be specific, in order to efficiently distribute tasks, the

common practice is to use threadpool and distributed

work queues, namely each thread will be associated

with a dedicated task queue storing the tasks. In ad-

dition, when the work queue becomes empty, the cor-

responding threads can also steal from other threads’

queues. Some famous implementations include Cilk[3],

1

FJTask[4], Hood[5].

In this project, we implemented both the child first

and the continuation first policy. Our implementation

differs from the above ones in that instead of modifying

the compiler to manually save context and maintaining

a global stack view using complex cactus stack struc-

ture and closure tree[], our model is much simpler to

understand and implement.

Our continuation stealing model is based on the idea

of the generator. To be specific, each task serves as a

subtask generator and each time executing it will re-

turn a new subtask (if possible). Then it will suspend

itself and wait to be called next time. We use stackless

coroutines supported by modern C++ to implement

it, which only requires about 300 LoCs. We also de-

signed a new two queue technique to solve the circular

dependency problem for the child first policy.

With sufficient parallable tasks and minimum con-

tention, we expect our framework can achieve linear

speedup relative to the number of parallel instances.

1.1.1 Stackful Coroutine & Stackless Corou-

tine

There are basically two kinds of coroutine implementa-

tion approaches, stackful coroutine and stackless corou-

tine.

For stackful coroutines, each coroutine requires its

own stack and therefore can be suspended at any func-

tion depth level. However, it is quite hard to antic-

ipate the to-be-used stack size and it is even harder

to (potentially migrate the whole coroutine stack) mi-

grate the coroutines across the threads. Even worse,

since each coroutine needs a dedicated stack to main-

tain its own activation records, it limits the number

of coroutines each thread can create. Currently, few

implementations realize the cross-thread version, one

of the examples is the Golang scheduler. Other im-

plementations regard coroutines as a concept one level

below the thread and do not allow the cross-threads

migration behavior, therefore easier to implement, ex.

boost.coroutine, boost.Fiber.

Another kind of coroutine is stackless, which means

the coroutine stores its state in the heap and there is

no need to maintain a stack for each coroutine when

it is suspended. This approach depends on the fact

that the size of the coroutine state can be determined

in the compile time if its stack depth is only one. Ap-

parently, the limitation of this approach is that only

the top-level routine may be suspended to avoid stack

increasing. But this approach requires less memory for

each coroutine and has better scalability.

Fortunately, the fork join style typically follows the

pattern that within each task, always (1) splitting the

current task, (2) forking new subtasks, (3) joining them

and (4) composing the results. Therefore, normally

there is little need for non-top-level fork support. One

step above, considering the implementation complexity

and the scalability of our framework, we exploit stack-

less coroutine provided by modern C++ and a higher

level coroutine primitive library called cppcoro, espe-

cially its generator primitive (expected to be included

by the C++ standard library in the future).

1.1.2 Data Structures

The key design objective for our framework is to ef-

ficiently assign each task to execution resources. Our

implementation is a lightweight, object-oriented fork

join framework with modern C++ language level sup-

port.

From a high level, our core implementation is a work-

stealing based distributed work queue model. To be

specific, the key data structures include three parts. (1)

a worker thread pool (2) a set of thread-dedicated work

queues (3) the task base class. These data structures

2

are discussed separately in the following paragraphs.

Figure 1: Core Data Structure

ForkJoin::ThreadPool To start a fork join task,

users need to first instantiate a thread pool, whose

thread size can be specified when constructed. It serves

as a handle to a set of parallel execution resources. Un-

der the hood, they consist of a set of pthreads. To start

a fork join task, users should create a root task and pass

to it. Besides, the threadpool class provides the forever

loop executed by each worker thread and also the task

stealing discipline.

ForkJoin::Task Task serves as the callable base

class for users to derive. It provides the fork function

for users to spawn parallely executed subtasks and join

function for users to wait for their results.

ForkJoin::WorkQueue The WorkQueue class

holds all the spawned tasks and each thread has its

dedicated work queue. We implemented both a mu-

tex lock guard version and a lock free version of it.

Since the owner (owner thread) and the stealer (an-

other idle thread) of the queue only access the queue

from one side of the queue (like a deque), the class of-

fers push() and pop() for the owner thread and task()

for the stealer thread.

As a standard user case example, here is the Fi-

bonacci function implementation using our framework.

class Fib : public Task {

private :

int n ;

int r e s u l t ;

stat ic const int th r e sho ld = 20 ;

public :

Fib (int _n) : n(_n) {}

int getResu l t () { return number ; }

private :

void operator () () ov e r r i d e {

i f (number <= thre sho ld) {

number = seqFib (number) ;

return ;

}

Fib ∗ f1 = new Fib (n−1) ;

Fib ∗ f2 = new Fib (n−2) ;

f o rk (f 1) ;

f o rk (f 2) ;

j o i n (f 1) ;

j o i n (f 2) ;

r e s u l t = f1−>getResu l t () + f2−>

getResu l t () ;

delete f 1 ;

delete f 2 ;

}

public :

stat ic int seqFib (int n) {

i f (n == 0) return 0 ;

i f (n == 1) return 1 ;

return seqFib (n − 1) + seqFib (n − 2) ;

}

} ;

int main ()

{

ThreadPool tp (4) ;

Fib ∗ root_task = new Fib (40) ;

tp . s t a r tP r o c e s s (root_task) ;

tp . des t roy () ;

cout << " r e s u l t : ␣" << root_task−>getResu l t

() << endl ;

3

delete task ;

}

By deriving the base Task class, users pass the input

through the constructor function. The intermediate

execution can be stored in the instance variable and

therefore accessible by the parent task after joining.

User is mainly able to tune two parameters simi-

lar to the [4] paper. First is the number of threads

in the thread pool, whose default value is set to

the maximum parallel ability of the machine using

‘std::thread::hardware_concurrency()‘. Second is the

threshold granularity of the subtask for sequential ex-

ecution, which can significantly affect the proportion

of time for workers to keep stealing instead of doing

useful work, i.e. the work efficiency of the threads.

2 Approach

2.1 Lock-free Work Queue

Our model has features of two different stealing poli-

cies, i.e. continuation stealing and child stealing, but

our overall implementation for these two policies dif-

fers much. To solve the occurred issues and optimize

them, we took different approaches.

The main challenges in designing work queues in

child-stealing surround synchronization and its avoid-

ance. Initially, when we were developing the child-

stealing policy, we used fine-grained locks to synchro-

nize distributed work queues and avoid any other con-

currency issues. However, when we did any operations

on the work queues, we always needed to acquire a

lock which caused numerous contentions and degrade

performance.

Obtaining locks for every queue operation can eas-

ily become a bottleneck. Therefore, instead of using

fine-grained locks, we attempted to implement a lock-

free work queue for regular queue operations like push

and pop and stealing from other threads. If we only

have a single reader and a single writer, it will be easy

and straightforward to implement a lock-free deque as

taught in class. However, in our case, a work queue

can have two writers at the same time. One such sce-

nario is that a worker thread is trying to push new

work onto its own work queue, while another worker

thread is stealing work from the same work queue.

At our first thought, we believed a deque was a good

data structure for our work queue. To be specific, we

could allow stealing from other threads to happen at

one end of the work queue, to say the bottom of the

queue which similar to the approach used in the [4] pa-

per. Similarly, a worker thread pushes and pops tasks

from the top of its own work queue. In a nutshell,

stealing only happens at the bottom of a work queue,

and push/pop happens at the top of a work queue.

Notably, when a work queue only contains one task,

the pop operation has a higher priority than stealing.

In other words, in our implementation, a worker can

never steal tasks from a work queue with only one sin-

gle task, which makes our design of work queues sim-

ple. Furthermore, we declared the bottom and top of

a work queue as atomic variables. So, we can check

whether a work queue has more than one element by

pre-decrementing top:

If (–top >= base) in pop operation

and pre-incrementing base:

If (++base < top) in steal operation.

Noticing that pop and steal operations can still in-

terfere if the deque is about to become empty, we still

need entry locks to grant the invoking thread access to

the work queue for stealing. Likewise, a work queue

can be ‘fake’ empty because we pre-increment the base

of a work queue. So, we should do a double-check in

pop. Especially, when a pop operation does the second

check, it should acquire the entry lock for the work

4

queue to ensure that all stealing operations on that

work queue have finished so far. This allows the worker

thread to know if its work queue is truly empty. Be-

sides the above scenario, pop and steal are guaranteed

to operate on disjoint elements of the array without

causing any synchronization issues.

void

WorkQueue : : push (TaskInnerWrapper∗ task) {

int t = top ;

top++;

wkq [t] = task ;

}

TaskInnerWrapper∗

WorkQueue : : pop () {

int t = −−top ;

i f (t >= base) {

return wkq [t] ;

} else { /∗ empty ∗/

en t ry l k . l o ck () ;

i f (base > t) {

/∗ true empty ∗/

++top ;

en t ry l k . unlock () ;

return NULL;

} else {

en t ry l k . unlock () ;

return wkq [t] ;

}

}

}

TaskInnerWrapper∗

WorkQueue : : take () {

en t ry l k . l o ck () ;

int b = base++;

i f (base < top) {

en t ry l k . unlock () ;

return wkq [b] ;

} else {

base−−;

en t ry l k . unlock () ;

return NULL;

}

}

Figure 2: "Dead Joins" Illustration

2.2 2Q for Continuation Stealing

Regarding concurrency issues in continuation stealing,

things get more complicated than child stealing, and

the main challenge here is to avoid “dead-join”s. Since

the stolen unit is not a task or subtask in continua-

tion stealing, there exist dependencies among continu-

ations. Additionally, our join method is greedy. When

the task is waiting for its subtasks to finish, it tries to

finish all the work from in its own work queue. If the

work queue is empty, it will try to steal work from oth-

ers. If it steals a task that has dependencies with the

current task, the current join can be blocked forever.

To illustrate the ‘dead-joins’ problem, let’s take the

Fibonacci sequence program with n = 33 and three

threads as an example which is shown in the Figure 2 .

For simplicity, other tasks which are not related are not

shown in the Figure 2. In the beginning, task Fib(33)

was in the work queue of thread 0. When thread 2 be-

gan task Fib(32) which is at the step of joining Fib(31),

thread 1 stole task Fib(33) from thread 0 and pushed

it onto its own work queue. However, thread 2 found

that Fib(31) was not finished then, and it tries to work

on tasks in its own work queue. Finding that its own

work queue was empty, thread 2 stole task Fib(33) from

5

thread 1. The severe issue occurred when thread 2 at-

tempted to execute task Fib(33). Although thread 2

started to join Fib(32) in task Fib(33), Fib(32) could

never be accomplished. The original context of thread

2 was joining Fib(31) in task Fib(32), but now thread

2 is waiting for Fib(32) in task Fib(33). Until task

Fib(33) is finished, we can continue task Fib(32). But

until task Fib(32) is joined, task Fib(33) can be accom-

plished. In other words, these two tasks are waiting for

each other. The reason why this issue happens is that

continuations can have dependencies. If continuations

are stolen randomly, we can not guarantee that order

of accomplishment is preserved in work queues.

This was the biggest challenge we had to overcome

in this project. One approach to circumvent this issue

is that we only allow threads to steal from one single

queue. In other words, we could change our design for

continuation stealing from distributed work queue to a

single central work queue. At the start of the process,

we push the root task onto that work queue, and every

worker thread steals tasks from it. Since subtasks are

generated in order in the central work queue, we don’t

have to worry about the order of continuation in this

case. However, a central work queue is not a very effi-

cient way to achieve dynamic scheduling. Since we still

had entry locks for stealing as we mentioned before, a

single work queue could easily be a bottleneck.

Another approach with distributed work queues is

to have a local work queue for each thread, and we

call this method “2Q”. One thing to point out is that

dependencies among different continuation only mat-

ter at the join but instead of a fork. In addition, we

would like to do works when we are waiting for other

tasks to be completed. Thus, instead of continuing

executing tasks in the shared work queue or stealing

tasks from other work queues in the context of join-

ing subtask, we can simply push the current contin-

uation (join(subtask)) onto a local work queue that

nobody else can access if the waited subtask is not fin-

ished at that moment. We can visit this continuation

later, but for now, the thread will simply suspend it

and attempt to steal tasks from others. Significantly,

we protect these continuations by pushing them in a

local work queue. Therefore, we have two work queues

for a thread. Namely, one is a shared work queue, and

the other is a private work queue.

In a word, if a worker thread finds that the contin-

uation is not finishable at that moment, it just pushes

it to the back of its local work queue and tries to fetch

the next task from its shared work queue. When the

shared work queue is truly empty, it will try to fetch a

task from its local work queue. If that one is still not

finishable, the thread simply pushes back the continu-

ation at the front of the local work queue and performs

stealing.

while ((curr_task = curr_workq . pop ()) != NULL) {

// bookkeep be f o r execu t ing ta sk

curr_task−>task−>tp = tp ;

curr_task−>task−>threadId = threadId ;

i f (curr_task−>gen_it == NULL) {

/∗ ta sk has not been s t a r t e d ∗/

curr_task−>gen_it = make_unique<

cppcoro : : d e t a i l : :

g ene ra to r_i t e ra to r<Task ∗>>(

curr_task−>gen−>begin ()) ;

} else {

/∗ ta sk i s coni tunuat ion ∗/

(∗ curr_task−>gen_it)++;

}

i f ((∗ curr_task−>gen_it) == curr_task−>gen

−>end ()) {

curr_task−>task−>is_done = true ;

Task ∗temp_task = curr_task−>task ;

delete curr_task ;

i f (temp_task == task) return ;

} else {

curr_workq . push (curr_task) ;

6

Task ∗ chi ld_task = ∗(∗ curr_task−>

gen_it) ;

TaskInnerWrapper ∗ child_task_wrapper =

new TaskInnerWrapper{

make_unique<cppcoro : : generator<

Task ∗>>((∗ chi ld_task) ()) ,

NULL,

ch i ld_task

} ;

threadId , child_task_wrapper−>task−>

get Id ()) ;

curr_workq . push (child_task_wrapper) ;

}

tp−>s t e a l (threadId) ;

}

3 Results and Analysis

We used the computing resources in the Pittsburgh Su-

percomputing Cluster (PSC) to evalute our implemen-

tation. To be specific, we use the non-shared nodes in

the cluster, which are equipped with two AMD EPYC

7742 processors (2.25-3.40 GHz, 2x64 cores), 256 GB

RAM and 256MB L3 cache.

We mainly used our framework to accelerate three

typical applications. First is to recursively calculate

the 50th term of the Fibonacci sequence, with the se-

quential calculation threshold equals to 30. Second is

matrix multiplication. For simplicity, we tested our

model with 2 2048x2048 identity matrix with granu-

larity of 64x64. Third is to use quick sort to order

1,000,000,000 integers with the sequential calculation

threshold equals to 1,000,000. We ran both the child-

stealing policy and the our 2Q implementation on these

applications in the cluster.

3.1 Speedup

Figure 3: "Speedup in Fibonacci"

Figure 4: "Speedup in Matrix Multiplication"

Figure 5: "Speedup in Quick Sort"

3.1.1 Task Granularity

In the problem of the Fibonacci sequence, we started

with a small task granularity. That is when a task

is under a user-defined threshold, that task can no

longer be divided, and we work on that task directly

instead of dividing it into smaller pieces. In this case,

the threshold of task granularity is the input number.

However, we found the performance was not good as

7

we expected since we distributed more work to worker

threads. Eventually, we increased the granularity to

achieve good performance on this task. The benchmark

started with 50, and the threshold was 30. The pro-

gram was sped up linearly with the number of threads

growing up before the number of threads got to 64

for both two stealing policies. Although we allocated

more threads in our thread pool, the program was

not accelerated to an ideal speed, especially for the

continuation-stealing. Though the speed actually in-

creased, it still struggled when we increased the number

of threads from 64 to 128. In this case, child-stealing

performed better compared to continuation-stealing.

3.1.2 Stealing Granularity

On one hand, we believe that we may not get a great

threshold value for this problem. Because in our previ-

ous testing, the threshold value actually mattered the

overall speed. As we mentioned earlier, a bad threshold

can lead to bad speed which could be worse than the se-

quential program. On other hand, more contention in

continuation-stealing can be one factor. In child steal-

ing, the stealing granularity is always a task. However,

in continuation-stealing, the stealing granularity is a

continuation that has less workload than a single task

for most of the time. Since, in our design, every work

queue except the thread 0’s work queue is empty at

the start of the process. So, stealing can happen at

an early stage of the whole process. A small stealing

granularity may lead to more contention potentially in

our design.

3.1.3 Trade-off Between Task Granularity and

Contention

Task granularity is an important concept in our design

with the divide-and-conquer algorithm because it can

affect greatly the contention. From our point of view,

the reason why a small task granularity resulted in bad

performance is that numerous contentions were drag-

ging down the speed. Considering a scenario that the

task granularity is very small, this actually is good for

workload balancing since the workload is distributed in

a find-grained way. However, the work queue of work-

ers can be empty very soon, since they finish their work

faster compared with a large task granularity. In other

words, stealing happens more frequently. Although we

have semi-lockfree work queues for workers, we still

have entry locks for stealing. Numerous contentions

for acquiring entry locks can be a great cost in this

case. However, considering task granularity is a little

bit out of our scope, since task granularity is compli-

cated and different for different applications, and we

only provide a framework for users.

3.2 Stealing Overhead

Figure 6: "Stealing Overhead in Child Stealing"

Figure 7: "Stealing Overhead in Continuation Steal-
ing"

8

Stealing plays an important role in our model, so we

would like to see the influence of thread numbers on

the stealing overhead. In order to compare the over-

head in stealing with the different number of threads,

we would like to compare the overall execution time

and the overall processing time to represent total work

and total task size. To be more specific, we sum all

the execution time and computing time across threads.

Since we did not change the overall task size and the

number of tasks, these two values should be consistent

when we changed the thread number. Notably, the re-

sult matched our expectations before we had more than

64 threads. Conversely, the overall time rose dramati-

cally when the thread number reached 128, especially

for continuation stealing. To get a deeper insight, we

also plotted the ratio of execution time to the process-

ing time. It turned out the threads did less effective

work under a large thread number, and the total task

size increased.

In our consideration, having more threads means

fewer probabilities to steal work successfully in the

early stage of the process. Like we mentioned before,

most work queues are empty at the beginning of the

process, and workers steal randomly. Therefore, there

will be less chance for an idle worker to choose a non-

empty work queue as a victim in our design. This fact

potentially increases the total number of stealing signif-

icantly which causes large stealing overhead as we can

observe in the figure 6 and figure 7. By the same token,

when the process is about to finish, most work queues

are empty, it is also hard for a worker to steal work.

However, we didn’t have further evidence to prove this

affect the overhead greatly, and we may need to explore

it further in our future work.

3.3 Work Efficiency

In our fork join framework, the running time of each

thread includes two part, stealing time and computing

time. Therefore, the key metrics for work efficiency

is each thread’s computing time percentage relative to

the overall running time. Followings are several mea-

surements of the ability of our framework to balance

the workload when there are eight threads.

Figure 8 through 11 shows near optimal balanced

load for applications like Fibonacci calculation and ma-

trix multiplication. All threads’ computing time equal

to their running time. This result also matches the

linear speedup result in section 3.1. Since each thread

devote their full time to do useful work, the speedup

should be 8x which means about 100% work efficiency.

For quick sort, results in figure 12 and figure 13 shows

that each thread’s work is not so even. With thread

0’s computing time tends to take over larger percent-

age than others. We believe it is because it starts the

root task and spawns the first several subtasks. On the

other hand, other threads’ work efficiency tend to be

similar and it may be due to the fact that each thread

randomly steal tasks from other threads’ work queue,

therefore with similar probability to successfully steal

a task, i.e. similar stealing time. As for the difference

between child stealing and continuation stealing pol-

icy, our two queue implementation of the continuation

stealing policy tends to have less work efficiency. We

believe it is because we store those waiting to be joined

tasks in local queue instead of letting other threads to

check whether their waiting tasks finished or not, which

introduces more latency.

9

Figure 8: "Work Balance (Fibonacci with child-
stealing)"

Figure 9: "Work Balance (Fibonacci with
continuation-stealing)"

Figure 10: "Work Balance (Matrix multiplication with
child-stealing"

Figure 11: "Work Balance (Matrix multiplication with
continuation-stealing"

Figure 12: "Work Balance (Quick Sort with child-
stealing"

Figure 13: "Work Balance (Quick Sort with continua-
tion stealing)"

4 Future Work

Because of the limit of time, we haven’t compare the

performance of our framework with other implemen-

tations, like cilk[3], Hood[5], JTask[4] etc. And it is

meaningful to compare our coroutine-based implemen-

tation with the compiler-modification based implemen-

tation of cilk.

10

In addition, we are still assessing the necessity to

extend our framework to a distributed version, which

can fork task and steal task from another process and

probably in another machine. This version will have

much more difficulties, since we should further consider

the state migration cross machines, the communication

mechanism and even the failure recovery mechanism.

4.1 Work Distribution

The project was distributed 50%-50%. We worked

together on the implementation of child-stealing and

continuation-stealing. However, we measured the per-

formance of our model separately. Xin focused on ma-

trix multiplication, and Jiarui worked on quick sort.

References

[1] R. D. Blumofe and C. E. Leiserson, “Schedul-

ing multithreaded computations by work stealing,”

Proceedings 35th Annual Symposium on Founda-

tions of Computer Science, 1994, pp. 356-368, doi:

10.1109/SFCS.1994.365680.

[2] Färnstrand, Linus. “Parallelization in Rust with

fork-join and friends: Creating the fork-join frame-

work.” (2015).

[3] Frigo, Matteo Leiserson, Charles Randall, Keith.

(1999). The Implementation of the Cilk-5 Multi-

threaded Language. ACM SIGPLAN Notices. 33.

10.1145/277650.277725.

[4] Lea, Doug. (2000). A Java Fork/Join Frame-

work. ACM 2000 Java Grande Conference.

10.1145/337449.337465

[5] Blumofe, R. and D. Papadopoulos. “Hood: A user-

level threads library for multiprogrammed multi-

processors.” (1998).

11

	Background
	Divide and Conquer
	Stackful Coroutine & Stackless Coroutine
	Data Structures

	Approach
	Lock-free Work Queue
	2Q for Continuation Stealing

	Results and Analysis
	Speedup
	Task Granularity
	Stealing Granularity
	Trade-off Between Task Granularity and Contention

	Stealing Overhead
	Work Efficiency

	Future Work
	Work Distribution

